Abstract

RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21–24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.

Highlights

  • Insects are considered as the most significant biotic constraints affecting plants and animals life worldwide

  • Insects cause direct loss to agricultural production, and indirectly as vectors for various plant pathogens. They belong to class Insecta or Hexapoda under the largest class of the major invertebrate phylum Arthropoda, with more than 30 orders (Gullan and Cranston, 2010; http://espacepourlavie.ca/en/chart-orders-insects)

  • The majority of studies on RNA interference (RNAi) for insect control have been engrossed on the insect midgut as it is considered as most effective target for the gene silencing

Read more

Summary

Introduction

Insects are considered as the most significant biotic constraints affecting plants and animals life worldwide. Insecticides control the insects by targeting crucial enzymes or proteins involved in different biological processes described above. In order to achieve RNAi based insect resistance, several dsRNA/siRNA delivery methods have been developed to target key proteins/enzymes of insects (Yu et al, 2013).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call