Abstract

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.

Highlights

  • Land use is at the core of various sustainable development goals

  • The SSP scenario framework consists of five contrasting storylines[19], with SSP2 representing a baseline development with continuation of current trends, a sustainability scenario (SSP1), a regional rivalry scenario (SSP3), a fragmentation scenario (SSP4), and a fossil fuel scenario (SSP5)

  • Cropland area in 2050 is lower in SSP1 (−13% on average) and higher in SSP3 (+8% on average), compared with SSP2 (Fig. 1). This is consistent with the storylines that describe more sustainability and regard for environmental boundaries in SSP1, and stronger environmental degradation in SSP3

Read more

Summary

Introduction

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; model quantification of these scenarios shows substantial heterogeneity in land-use projections. We build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. We use the scenario framework of the Shared Socioeconomic Pathways (SSPs)[17] and their implementation by integrated assessment and agricultural models[14], to explore how long-term drivers determine projections of land use and food availability. We follow a sensitivity methodology recently applied to projections of CO2 emissions of the SSP scenarios[18] to assess the contribution of each driver to the scenario outcomes This allows us to explain model spread and results and, more importantly, to identify the key determinants of future land use, their relative importance, and interactions. Our analysis covers all five models that participated in the initial quantification of land use in the SSPs14, namely AIM27, GCAM28, GLOBIOM29, IMAGE-MAGNET30,31, and MAgPIE32, plus an additional model, IMPACT33, frequently used in agricultural assessments[3,34]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.