Abstract
In the Industry 4.0 framework based on IoT and smart manufacturing, it is essential to support factory automation and flexibility in harsh or dynamic industrial environments. State-of-the-art technology suggests building a controlled workspace using large-scale deployment of wireless sensors. To overcome the technological challenges in scalability and heterogeneity for large-scale industrial deployment, group-based industrial wireless sensor networks (GIWSNs) are suggested, in which wireless sensors are divided into multiple groups for multiple monitoring tasks, and each group of sensors is deployed densely within a subarea in a large plant or along a long production/assembly line, while connectivity between groups is required. As wireless sensors are equipped with batteries with limited power, it has been challenging to plan sleep schedules of sensors, which are influenced significantly by deployment of such a large-scale GIWSN. However, most previous works on wireless sensor networks independently investigated deployment and sleep scheduling problems, both of which have been shown to be NP-hard. Therefore, this work jointly considers deployment and sleep scheduling of sensors in a GIWSN along a production line. Via the theory of symmetries, we alleviate the computational concerns from multiple groups to one group and another medium-size group. Then we propose a hybrid harmony search and genetic algorithm, which incorporates deployment and sleep schedules to reduce energy consumption. Simulations verify this joint methodology to effectively achieve energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.