Abstract

This paper deals with generalized power flow models of compound planetary gear trains based on standard planetary gears. In this context, the Bond Graph approach provides an optimal tool for a large variety of structures. Starting with compound gears based on two standard planetary gears, two kinds of parameter definitions are discussed and two specifications for power ratio and efficiency are compared. Next, the influence of elastic shaft connections is clarified. Essential methods for these findings are the use of symmetry and the definition of sub-systems and, if applicable, of scalar or vectorial models. The second part deals with the effect of the number of constraints on constructions based on three standard planetary gears. Typical consequences, such as the number of free running elements, of complete Willis equations or of self-locking impacts, are systemized and illustrated by means of reference instances. It is shown by example that constructions featuring five external shafts would avoid such effects. Corresponding outcomes for the equivalent dynamic system equations, the parameter definitions and the Bond Graph modelling are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.