Abstract

Abstract. The conductivity mass balance (CMB) method has a long history of application to baseflow separation studies. The CMB method uses site-specific and widely available discharge and specific conductance data. However, certain aspects of the method remain unstandardized, including the determination of the applicability of this method for a specific area, minimum data requirements for baseflow separation and the most accurate parameter calculation method. This study collected and analyzed stream discharge and water conductivity data for over 200 stream sites at large spatial (2.77 to 2 915 834 km2 watersheds) and temporal (up to 56 years) scales in the Mississippi River basin. The suitability criteria and key factors influencing the applicability of the CMB method were identified based on an analysis of the spatial distribution of the inverse correlation coefficient between stream discharge and conductivity and the rationality of baseflow separation results. Sensitivity analysis, uncertainty assessment and T test were used to identify the parameter the method was most sensitive to, and the uncertainties of baseflow separation results obtained from different parameter determination methods and various sampling durations were compared. The results indicated that the inverse correlation coefficient between discharge and conductivity can be used to quantitatively determine the applicability of the CMB method, while the CMB method is more applicable in tributaries, headwater reaches, high altitudes and regions with little influence from anthropogenic activities. A minimum of 6-month discharge and conductivity data was found to provide reliable parameters for the CMB method with acceptable errors, and it is recommended that the parameters SCRO and SCBF be determined by the 1st percentile and dynamic 99th percentile methods, respectively. The results of this study can provide an important basis for the standardized treatment of key problems in the application of the CMB.

Highlights

  • Baseflow is the groundwater contribution to total streamflow (Hewlett and Hibbert, 1967), which plays a critical role in sustaining streamflow during dry periods (Rosenberry and Winter, 1997)

  • The analysis of the 201 stations across the major Mississippi River basin showed a high variation in response of conductivity to stream discharge

  • The conductivity mass balance (CMB) method was found to be more applicable to tributaries, headwater sites, sites at high altitude and sites with little influence from anthropogenic activities

Read more

Summary

Introduction

Baseflow is the groundwater contribution to total streamflow (Hewlett and Hibbert, 1967), which plays a critical role in sustaining streamflow during dry periods (Rosenberry and Winter, 1997). Given the wide availability of stream discharge records, these approaches can readily be applied to a large number of sites (Miller et al, 2014). Since these methods are typically applied without reference to any hydrological basin variables, the objective assessment of their accuracy remains a challenge

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call