Abstract

The effect of manufacturing parameters on the size and drug-loading of ketoprofen-containing biodegradable and biocompatible poly(dl-lactic-co-glycolic acid) (PLGA) microspheres prepared by the solvent evaporation method was investigated. For both drug-free and drug-loaded microspheres, smaller microspheres with a narrower size distribution were obtained when the stirring rate or the volume of the organic phase was increased. Incorporation of ketoprofen was found to increase with increasing volume of the organic phase and decreasing pH of the aqueous phase, but was independent of the acidity and the inherent viscosity of the PLGA used. The biphasic release profile of ketoprofen from the microspheres was dependent on the type of PLGA as well as the size and drug-loading, two parameters governed by the manufacturing process. The first burst effect was found to increase with the drug content, reduction of size of the microspheres and increasing inherent viscosity of the matrix, whereas acidity of the PLGA had no effect on the release of this acidic drug. A vigorous first burst effect was associated with reduced sustained delivery of ketoprofen, the rate of the delayed release phase being dependent on the inherent viscosity of the matrix, the size, the payload and the pH during preparation of the microspheres. Thus, by selection of the manufacturing parameters and the type of PLGA, it is possible to design a controlled drug delivery system for the prolonged release of ketoprofen, improving therapy by possible reduction of time intervals between peroral adminstration and reduction of local gastrointestinal side effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.