Abstract

Carboxylic acids play a fundamental role in the transformation of biomass into liquid fuels and other useful chemicals. In order to reduce the O/C content of biofuels, carboxylic acids need to be decomposed by decarboxylation, dehydroxylation, or decarbonylation unimolecular reactions, or they need to be converted into ketones via complex bimolecular reaction mechanisms. Ketonization, that is, the transformation of carboxylic acids into ketones, carbon dioxide, and water, is promoted by heterogeneous catalysts based on oxide materials. Among the most active catalysts are titania and zirconia surfaces. In recent years, a large body of experimental data has been complemented by specific investigations performed with first-principles electronic structure calculations based on density functional theory (DFT). In this review, I discuss the present level of understanding of the bonding modes of carboxylic acids (acetic acid in particular) on the TiO2 and ZrO2 surfaces as obtained from DFT calculations. Enolizat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.