Abstract

β-hydroxybutyrate (BHB) is one of main component of ketone body, which plays an important protective role in various tissues and organs. Whereas, its exact regulatory roles and mechanisms in Parkinson's disease (PD) have not been full elucidated. In this study, SN4741 cells and C57BL/6 mice were treated with 1-methyl-4-phenylpyridinium ion (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish the PD model in vitro and in vivo. Cell viability and damage to dopaminergic neurons were measured by cell counting kit 8, Calcein-AM/PI staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling and hematoxylin & eosin staining. Corresponding assay kits and BODIPY 581/591 C11 probe evaluated oxidative stress and intracellular iron levels. Western blot examined the ferroptosis-related proteins. MPTP/MPP+-treatment reduced cell viability but triggered oxidative stress and ferroptosis in SNA4741 cells and brain tissues of mice. However, these effects were dramatically reversed by BHB and Fer-1 treatment. Mechanistically, Zinc finger protein 36 (ZFP36) was a target of BHB, and its depletion could reverse the anti-oxidative stress and anti-ferroptosis roles of BHB. Moreover, ZFP36 could directly bound to acyl-CoA synthetase long-chain family member 4 (ACSL4) mRNA to decay its expression, thus negatively modulating ACSL4-mediated oxidative stress and ferroptosis. Summary, BHB alleviated oxidative stress and ferroptosis of dopaminergic neurons in PD via modulating ZFP36/ACSL4 axis, which provided some new understanding for PD prevention and treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call