Abstract

BackgroundKetone bodies play critical roles in organismal energy homeostasis; however, their effects on various diseases remain unknown. We investigated the effects of two ketone bodies, β-hydroxybutyric acid (β-HB) and acetoacetic acid (AcAc), on type I hypersensitivity in vitro and in vivo. MethodsThe effects of β-HB and AcAc on mast cell degradation, as monitored by β-hexosaminidase release in rat basophilic leukemia RBL-2H3 cells, and hypothermic anaphylaxis, a potentially deadly allergic reaction, were evaluated in an anaphylactic mouse model. ResultsBoth β-HB and AcAc inhibited β-hexosaminidase release from RBL-2H3 cells in a concentration-dependent manner. The inhibitory effects of AcAc were greater than those of β-HB. The inhibitory effects of β-HB and AcAc were significantly attenuated in the presence of a GPR109A receptor antagonist mepenzolate bromide and GPR43A antagonist GLPG0974. β-HB and AcAc did not affect the viability of RBL-2H3 cells at concentrations below 100 µmol/L. In an anaphylactic mouse model, the intraperitoneal injection of AcAc (1 µmol/mouse) inhibited anaphylactic hypothermia, whereas the injection of β-HB (1–10 µmol/mouse) did not. ConclusionsThese results suggest that β-HB and AcAc, especially AcAc, are effective in type I hypersensitivity reactions, such as anaphylaxis, by inhibiting mast cell degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call