Abstract

An increasing number of individuals with type 1 diabetes (T1D) manage glycemia with insulin pumps containing short-acting insulin. If insulin delivery is interrupted for even a few hours due to pump or infusion site malfunction, the resulting insulin deficiency can rapidly initiate ketogenesis and diabetic ketoacidosis (DKA). To detect an event of accidental cessation of insulin delivery, we propose the design of ketone-based alert system (K-AS). This system relies on an extended Kalman filter based on plasma 3-beta-hydroxybutyrate (BOHB) measurements to estimate the disturbance acting on the insulin infusion/injection input. The alert system is based on a novel physiological model capable of simulating the ketone body turnover in response to a change in plasma insulin levels. Simulated plasma BOHB levels were compared with plasma BOHB levels available in the literature. We evaluated the performance of the K-AS on 10 in silico subjects using the S2014 UVA/Padova simulator for two different scenarios. The K-AS achieves an average detection time of 84 and 55.5 minutes in fasting and postprandial conditions, respectively, which compares favorably and improves against a detection time of 193 and 120 minutes, respectively, based on the current guidelines. The K-AS leverages the rapid rate of increase of plasma BOHB to achieve short detection time in order to prevent BOHB levels from rising to dangerous levels, without any false-positive alarms. Moreover, the proposed novel insulin-BOHB model will allow us to understand the efficacy of treatment without compromising patient safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.