Abstract

Progressive cognitive decline and increased brain iron deposition with age are important features of Alzheimer’s disease. Previous studies have found that the short-term ketogenic diet has neuroprotective effects in a variety of neurodegenerative diseases, but the effects of an early and long-term ketogenic diet on brain iron content and cognition of Alzheimer's disease have not been reported. In our study, 8-week-old APP/PS1 mice were given a 12-month ketogenic or standard diet, while C57BL/6 mice matched with the age and genetic background of APP/PS1 mice were used as normal controls to be given a standard diet for the same length of time. We found that 12 months of an early ketogenic diet improved the impaired learning and memory ability of APP/PS1 mice. The improvement of cognitive function may be related to the reduction of amyloid-beta deposition and neuronal ferroptosis. The mechanism was achieved by the regulation of ferroptosis-related pathways after activation of nuclear factor erythroid 2-related factor 2 by ketogenic diet-induced elevated β-hydroxybutyrate. In addition, blood biochemical results showed that compared with the standard diet group of the disease, although the early and long-term ketogenic diet increased blood lipids to some extent, it seemed to reduce liver, renal, and myocardial damage caused by genetic differences. This will provide a piece of positive evidence for the early and long-term use of ketogenic diets in people at risk of Alzheimer’s disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call