Abstract

The [2 + 2] cycloaddition of monosubstituted acetylenes to ketene has been studied by ab initio(G2(MP2,SVP) and DFT (B3LYP/6-31Gd)) methods. The activation barrier decreases with increasing electron-donating ability of the acetylene substituent, and it can be roughly correlated with the energy of the acetylene HOMO. The addition to the C[double bond, length as m-dash]C bond of ketene (giving cyclobutenones) is preferred for the less electron-rich acetylenes, but for the most electron rich ones (X = NH(2) and NMe(2)) the addition to the C[double bond, length as m-dash]O bond (giving oxetes) becomes competitive, with activation barriers as low as ca. 45 (30) kJ mol(-1) for the two computational methods used. The cyclobutenones and oxetes can undergo ring opening to vinylketenes and acylallenes, respectively. Furthermore, the latter two compounds can interconvert by a 1,3-shift of the substituent X. The acylallenes become thermodynamically more stable than the vinylketenes for [small pi]-(lone pair) donating substituents X, and the 1,3-shift barrier also decreases, to ca. 130 kJ mol(-1) for X = NMe(2). In contrast, the 1,3-shifts of CH(3) and H have very high barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.