Abstract

Previous reports have shown that ketamine triggered apoptosis in immature developing brain involving mitochondrial-mediated pathways. However, no data for ketamine effects on hippocampal and cortical mitochondrial function are available in prepubertal rats. Twenty-one-day-old Sprague-Dawley rats received ketamine (40mg/kg i.p.) for 3days and were killed 24hr after thelast injection. Hippocampal mitochondria from ketamine-treated rats showed decreased malate-glutamate state 4 and 3 respiratory rates and an inhibition in complex I and IV activities. Hippocampal mitochondrial membrane depolarization and mitochondrial permeability transition induction were observed. This was not reflected in an increment of H2 O2 production probably due to increased Mn-SOD and catalase activities, 24hr after treatment. Interestingly, increased H2 O2 production rates and cardiolipin oxidation were found in hippocampal mitochondria shortly after ketamine treatment (45min). Unlike the hippocampus, ketamine did not affect mitochondrial parameters in the brain cortex, being the area less vulnerable to suffer ketamine-induced oxidative damage. Results provide evidences that exposure of prepubertal rats to ketamine leads to an induction of mitochondrial ROS generation at early stages of treatment that was normalized by the triggering of antioxidant systems. Although hippocampal mitochondria from prepubertal rats were capable of responding to the oxidative stress, they remain partially dysfunctional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.