Abstract

Approximately one-third of Gulf War veterans suffer from Gulf War Illness (GWI), which encompasses mood disorders and depressive symptoms. Deployment-related exposure to organophosphate compounds has been associated with GWI development. Epigenetic modifications have been reported in GWI veterans. We previously showed that epigenetic histone dysregulations were associated with decreased brain-derived neurotrophic factor (BDNF) expression in a GWI rat model. GWI has no effective therapies. Ketamine (KET) has recently been approved by the Food and Drug Administration for therapy-resistant depression. Interestingly, BDNF upregulation underlies KET's antidepressant effect in GWI-related depression. Here, we investigated whether KET's effect on histone mechanisms signals BDNF upregulations in GWI. Male Sprague-Dawley rats were injected once daily with diisopropyl fluorophosphate (DFP; 0.5 mg/kg, s.c., 5 days). At 6 months following DFP exposure, KET (10 mg/kg, i.p.) was injected, and brains were dissected 24 hours later. Western blotting was used for protein expression, and epigenetic studies used chromatin immunoprecipitation methods. Dil staining was conducted for assessing dendritic spines. Our results indicated that an antidepressant dose of KET inhibited the upregulation of histone deacetylase (HDAC) enzymes in DFP rats. Furthermore, KET restored acetylated histone occupancy at the Bdnf promoter IV and induced BDNF protein expression in DFP rats. Finally, KET treatment also increased the spine density and altered the spine diversity with increased T-type and decreased S-type spines in DFP rats. Given these findings, we propose that KET's actions involve the inhibition of HDAC expression, upregulation of BDNF, and dendritic modifications that together ameliorates the pathologic synaptic plasticity and exerts an antidepressant effect in DFP rats. SIGNIFICANCE STATEMENT: This study offers evidence supporting the involvement of epigenetic histone pathways in the antidepressant effects of ketamine (KET) in a rat model of Gulf War Illness (GWI)-like depression. This effect is achieved through the modulation of histone acetylation at the Bdnf promoter, resulting in elevated brain-derived neurotrophic factor expression and subsequent dendritic remodeling in the hippocampus. These findings underscore the rationale for considering KET as a potential candidate for clinical trials aimed at managing GWI-related depression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.