Abstract
Ketamine is a general anesthetic thought to act by antagonizing N-methyl-D-aspartate receptors. However, ketamine acts on multiple channels, many of which are potential targets-including hyperpolarization-activated cyclic nucleotide-gated and potassium channels. In this study we tested the hypothesis that potassium leak channels contribute to the anesthetic action of ketamine. Adult mouse cortical slices (400 µm) were exposed to no-magnesium artificial cerebrospinal fluid to generate seizure-like event activity. The reduction in seizure-like event frequency after exposure to ketamine (n = 14) was quantified as a signature of anesthetic effect. Pharmacologic manipulation of hyperpolarization-activated cyclic nucleotide-gated and potassium channels using ZD7288 (n = 11), cesium chloride (n = 10), barium chloride (n = 10), low-potassium (1.5 mM) artificial cerebrospinal fluid (n = 10), and urethane (n = 7) were investigated. Ketamine reduced the frequency of seizure-like events (mean [SD], -62 [22]%, P < 0.0001). Selective hyperpolarization-activated cyclic nucleotide-gated channel block with ZD7288 did not significantly alter the potency of ketamine to inhibit seizure-like event activity. The inhibition of seizure-like event frequency by ketamine was fully antagonized by the potassium channel blockers cesium chloride and barium chloride (8 [26]% and 39 [58%] increase, respectively, P < 0.0001, compared to ketamine control) and was facilitated by the potassium leak channel opener urethane (-93 [8]%, P = 0.002 compared to ketamine control) and low potassium artificial cerebrospinal fluid (-86 [11]%, P = 0.004 compared to ketamine control). The results of this study show that mechanisms additional to hyperpolarization-activated cyclic nucleotide-gated channel block are likely to explain the anesthetic action of ketamine and suggest facilitatory action at two-pore potassium leak channels.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.