Abstract
Normality testing is an essential part of statistical analysis to determine whether observed data are normally distributed or not. This study aims to document and analyze various types of errors frequently made by non-mathematics students when conducting normality tests. Furthermore, this descriptive qualitative research involved 32 second-year non-mathematics students as participants, who were given tasks requiring them to perform normality tests on datasets. The research findings indicate that the most common type of error made by non-mathematics students in conducting normality tests is encoding error, accounting for 40.7% of errors. This occurs when students mistakenly compare decimal values between Lcalc and Ltable. Consequently, the conclusions drawn from these normality tests may be inaccurate. Additionally, other types of errors identified include reading error, comprehension error, transformation error, and process skills error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.