Abstract

The kernel of an algebraic curvature tensor is a fundamental subspace that can be used to distinguish between different algebraic curvature tensors. Kernels of algebraic curvature tensors built only of canonical algebraic curvature tensors of a single build have been studied in detail. We consider the kernel of an algebraic curvature tensor R that is a sum of canonical algebraic curvature tensors of symmetric and skew-symmetric build. An obvious way to ensure that the kernel of R is nontrivial is to choose the involved bilinear forms such that the intersection of their kernels is nontrivial. We present a construction wherein this intersection is trivial but the kernel of R is nontrivial. We also show how many bilinear forms satisfying certain conditions are needed in order for R to have a kernel of any allowable dimension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call