Abstract

The kernel of an algebraic curvature tensor is a fundamental subspace that can be used to distinguish between different algebraic curvature tensors. Kernels of algebraic curvature tensors built only of canonical algebraic curvature tensors of a single build have been studied in detail. We consider the kernel of an algebraic curvature tensor R that is a sum of canonical algebraic curvature tensors of symmetric and skew-symmetric build. An obvious way to ensure that the kernel of R is nontrivial is to choose the involved bilinear forms such that the intersection of their kernels is nontrivial. We present a construction wherein this intersection is trivial but the kernel of R is nontrivial. We also show how many bilinear forms satisfying certain conditions are needed in order for R to have a kernel of any allowable dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.