Abstract
Tensors (also called multiway arrays) are a generalization of vectors and matrices to higher dimensions based on multilinear algebra. The development of theory and algorithms for tensor decompositions (factorizations) has been an active area of study within the past decade, e.g., [1] and [2]. These methods have been successfully applied to many problems in unsupervised learning and exploratory data analysis. Multiway analysis enables one to effectively capture the multilinear structure of the data, which is usually available as a priori information about the data. Hence, it might provide advantages over matrix factorizations by enabling one to more effectively use the underlying structure of the data. Besides unsupervised tensor decompositions, supervised tensor subspace regression and classification formulations have been also successfully applied to a variety of fields including chemometrics, signal processing, computer vision, and neuroscience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.