Abstract

We define what it means for a learning algorithm to be kernelizable in the case when the instances are vectors, asymmetric matrices and symmetric matrices, respectively. We can characterize kernelizability in terms of an invariance of the algorithm to certain orthogonal transformations. If we assume that the algorithm's action relies on a linear prediction, then we can show that in each case, the linear parameter vector must be a certain linear combination of the instances. We give a number of examples of how to apply our methods. In particular we show how to kernelize multiplicative updates for symmetric instance matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.