Abstract
Least squares kernel-based methods have been widely used in regression problems due to the simple implementation and good generalization performance. Among them, least squares support vector regression (LS-SVR) and extreme learning machine (ELM) are popular techniques. However, the noise sensitivity is a major bottleneck. To address this issue, a generalized loss function, called $$\ell _s$$ -loss, is proposed in this paper. With the support of novel loss function, two kernel-based regressors are constructed by replacing the $$\ell _2$$ -loss in LS-SVR and ELM with the proposed $$\ell _s$$ -loss for better noise robustness. Important properties of $$\ell _s$$ -loss, including robustness, asymmetry and asymptotic approximation behaviors, are verified theoretically. Moreover, iteratively reweighted least squares are utilized to optimize and interpret the proposed methods from a weighted viewpoint. The convergence of the proposal is proved, and detailed analyses of robustness are given. Experiments on both artificial and benchmark datasets confirm the validity of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.