Abstract

Linear subspace analysis methods have been successfully applied to extract features for face recognition. But they are inadequate to represent the complex and nonlinear variations of real face images, such as illumination, facial expression and pose variations, because of their linear properties. In this paper, a nonlinear subspace analysis method, Kernel-based Nonlinear Discriminant Analysis (KNDA), is presented for face recognition, which combines the nonlinear kernel trick with the linear subspace analysis method -- Fisher Linear Discriminant Analysis (FLDA). First, the kernel trick is used to project the input data into an implicit feature space, then FLDA is performed in this feature space. Thus nonlinear discriminant features of the input data are yielded. In addition, in order to reduce the computational complexity, a geometry-based feature vectors selection scheme is adopted. Another similar nonlinear subspace analysis is Kernel-based Principal Component Analysis (KPCA), which combines the kernel trick with linear Principal Component Analysis (PCA). Experiments are performed with the polynomial kernel, and KNDA is compared with KPCA and FLDA. Extensive experimental results show that KNDA can give a higher recognition rate than KPCA and FLDA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.