Abstract
Linear spectral mixture analysis (LSMA) has been widely used in remote sensing community. Recently, kernel-based approaches have received considerable interest in hyperspectral image analysis where nonlinear kernels are used to resolve the issue of nonlinear separability in classification. This paper extends the LSMA to kernel-based LSMA where three least squares-based LSMA techniques, least squares orthogonal subspace projection (LSOSP), non-negativity constrained least squares (NCLS) and fully constrained least squares (FCLS) are extended to their kernel counterparts, KLSOSP, KNCLS and KFCLS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.