Abstract
Data clustering in kernel-induced feature space is interesting in that, by nonlinearly mapping the observed data from a low-dimensional input space into a high (possibly infinite)-dimensional feature space by means of a given kernel function, the kernel-based clustering can reveal complicated (e.g. linearly nonseparable) data structures that may be missed by traditional clustering methods in the standard Euclidean space. A kernel-based deterministic annealing (KDA) algorithm is developed for data clustering by using a Gaussian kernel function. The Gaussian parameter (width), which determines the nonlinear mapping together with the Gaussian kernel, is adaptively selected by the scaled inverse of data covariance. The effectiveness of the Gaussian parameter (width) selection method and the superiority of the KDA algorithm for clustering a variety of data structures are supported by the experimental results on artificial and real data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEE Proceedings - Vision, Image, and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.