Abstract

This paper describes a new kernel wavelet-based anomaly detection technique for long-wave (LW) forward-looking infrared imagery. The proposed approach called kernel wavelet-Reed-Xiaoli (wavelet-RX) algorithm is essentially an extension of the wavelet-RX algorithm (combination of wavelet transform and RX anomaly detector) to a high-dimensional feature space (possibly infinite) via a certain nonlinear mapping function of the input data. The wavelet-RX algorithm in this high-dimensional feature space can easily be implemented in terms of kernels that implicitly compute dot products in the feature space (kernelizing the wavelet-RX algorithm). In the proposed kernel wavelet-RX algorithm, a two-dimensional wavelet transform is first applied to decompose the input image into uniform subbands. A number of significant subbands (high-energy subbands) are concatenated together to form a subband-image cube. The kernel RX algorithm is then applied to this subband-image cube. Experimental results are presented for the proposed kernel wavelet-RX, wavelet-RX, and the classical constant false alarm rate (CFAR) algorithm for detecting anomalies (targets) in a large database of LW imagery. The receiver operating characteristic plots show that the proposed kernel wavelet-RX algorithm outperforms the wavelet-RX as well as the classical CFAR detector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call