Abstract

A large part of the theory of extreme value index estimation is developed for positive extreme value indices. The best-known estimator of a positive extreme value index is probably the Hill estimator. This estimator belongs to the category of moment estimators, but can also be interpreted as a quasi-maximum likelihood estimator. It has been generalized to a kernel-type estimator, but this kernel-type estimator can, similarly to the Hill estimator, only be used for the estimation of positive extreme value indices. In the present paper, we introduce kernel-type estimators which can be used for estimating the extreme value index over the whole (positive and negative) range. We present a number of results on their distributional behavior and compare their performance with the performance of other estimators, such as moment-type estimators for the whole range and the quasi-maximum likelihood estimator, based on the generalized Pareto distribution. We also discuss an automatic bandwidth selection method and introduce a kernel estimator for a second-order parameter, controlling the speed of convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.