Abstract

Characteristics-based asset pricing implicitly assumes that factor betas or risk prices are linear functions of pre-specified characteristics. Present-value identities, such as Campbell-Shiller or clean-surplus accounting, however, clearly predict that expected returns are highly non-linear functions of all characteristics. While basic non-linearities can be easily accommodated by adding non-linear functions to the set of characteristics, the problem quickly becomes infeasible once interactions of characteristics are considered. I propose a method which uses economically-driven regularization to construct a stochastic discount factor (SDF) when the set of characteristics is extended to an arbitrary — potentially infinitely-dimensional — set of non-linear functions of original characteristics. The method borrows ideas from a machine learning technique known as the “kernel trick” to circumvent the curse of dimensionality. I find that allowing for interactions and non-linearities of characteristics leads to substantially more efficient SDFs; out-of-sample Sharpe ratios for the implied MVE portfolio double.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.