Abstract
Sparse representation has attracted great attention in the past few years. Sparse representation based classification (SRC) algorithm was developed and successfully used for classification. In this paper, a kernel sparse representation based classification (KSRC) algorithm is proposed. Samples are mapped into a high dimensional feature space first and then SRC is performed in this new feature space by utilizing kernel trick. Since samples in the high dimensional feature space are unknown, we cannot perform KSRC directly. In order to overcome this difficulty, we give the method to solve the problem of sparse representation in the high dimensional feature space. If an appropriate kernel is selected, in the high dimensional feature space, a test sample is probably represented as the linear combination of training samples of the same class more accurately. Therefore, KSRC has more powerful classification ability than SRC. Experiments of face recognition, palmprint recognition and finger-knuckle-print recognition demonstrate the effectiveness of KSRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.