Abstract

Nested estimation involves estimating an expectation of a function of a conditional expectation via simulation. This problem has of late received increasing attention amongst researchers due to its broad applicability particularly in portfolio risk measurement and in pricing complex derivatives. In this paper, we study a kernel smoothing approach. We analyze its asymptotic properties, and present efficient algorithms for practical implementation. While asymptotic results suggest that the kernel smoothing approach is preferable over nested simulation only for low-dimensional problems, we propose a decomposition technique for portfolio risk measurement, through which a high-dimensional problem may be decomposed into low-dimensional ones that allow an efficient use of the kernel smoothing approach. Numerical studies show that, with the decomposition technique, the kernel smoothing approach works well for a reasonably large portfolio with 200 risk factors. This suggests that the proposed methodology may serve as a viable tool for risk measurement practice.The e-companion is available at https://doi.org/10.1287/opre.2017.1591 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.