Abstract
Kernel independent component analysis (KICA) has an important application in blind source separation, in which how to select the optimal kernel, including the kernel functional form and its parameters, is the key issue for obtaining the optimal performance. In practices, a single kernel is usually chosen as the kernel model of KICA in light of experience. However, selecting a suitable kernel model is a more difficult problem if one has not sufficient experience. To deal with this problem, an evolution based method to select the kernel model of KICA is proposed in this paper. There are two main features of the proposed method: one is that using a multiple kernel model, a convex combination of several single kernels, replaces the single kernel model; another is that particle swarm optimization (PSO) algorithm is utilized to find the combination weights of the composite kernel. Experiments conducted on separating one-dimensional mixed signals, nature images, and spectroscopic CCD images showed that using multiple kernels model with PSO kernel selection algorithm can enhance the performance of KICA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.