Abstract

In traditional scene-based non-uniformity correction methods, ghosting artifacts and image blurring affect the response uniformity of the infrared focal plane array imaging system seriously and decrease the image quality. In order to suppress artifacts ghosting and improve image quality, this paper proposed a new based on kernel regression nonuniformity correction method for infrared image, because of its powerful ability to estimating. The main purpose of proposed method is to obtain reliable estimations of gain and offset parameters. Firstly, in order to suppress the ghost artifacts normally introduced by the strong edge effectively, this paper employs the kernel regression method to estimate the desired pixel value of each detector uint. Then the two correction parameters are achieved with the steepest descent method for the purpose of updating these two parameters synchronously. Finally, more accurate estimations of the two correction parameters can be obtained. Several simulated infrared image sequences are utilized to verify the performance of the proposed method. The results show that our method performs better than other compared methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.