Abstract
Abstract For an estimator of quantiles, the efficiency of the sample quantile can be improved by considering linear combinations of order statistics, that is, L estimators. A variety of such methods have appeared in the literature; an important aspect of this article is that asymptotically several of these are shown to be kernel estimators with a Guassian kernel, and the bandwidths are identified. It is seen that some implicit choices of the smoothing parameter are asymptotically suboptimal. In addition, the theory of this article suggests a method for choosing the smoothing parameter. How much reliance should be placed on the theoretical results is investigated through a simulation study. Over a variety of distributions little consistent difference is found between various estimators. An important conclusion, made during the theoretical analysis, is that all of these estimators usually provide only modest improvement over the sample quantile. The results indicate that even if one knew the best estimator ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.