Abstract

Kernel matrix optimization (KMO) aims at learning appropriate kernel matrices by solving a certain optimization problem rather than using empirical kernel functions. Since KMO is difficult to compute out-of-sample projections for kernel subspace learning, we propose a kernel propagation strategy (KPS) based on data distribution similar principle to effectively extract out-of-sample low-dimensional features for subspace learning with KMO. With KPS, we further present an example algorithm, i.e., kernel propagation canonical correlation analysis (KPCCA), which naturally fuses semi-supervised kernel matrix learning and canonical correlation analysis by means of kernel propagation projections. In KPCCA, the extracted correlation features of out-of-sample data not only incorporate integral data distribution information but also supervised information. Extensive experimental results have demonstrated the superior performance of our proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call