Abstract

The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reactivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate and are applicable to any molecule. In this study, SVR models built on structure-based descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models outperformed the quantum chemical SVR models, along the dimension of each reaction component. The applicability of the models was assessed with respect to similarity to training. Prospective predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalizability of the models, with particular interest along the aryl halide dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.