Abstract

In this paper, we present a kernel realization of a matched subspace detector (MSD) that is based on a subspace mixture model defined in a high-dimensional feature space associated with a kernel function. The linear subspace mixture model for the MSD is first reformulated in a high-dimensional feature space and then the corresponding expression for the generalized likelihood ratio test (GLRT) is obtained for this model. The subspace mixture model in the feature space and its corresponding GLRT expression are equivalent to a nonlinear subspace mixture model with a corresponding nonlinear GLRT expression in the original input space. In order to address the intractability of the GLRT in the feature space, we kernelize the GLRT expression using the kernel eigenvector representations as well as the kernel trick where dot products in the feature space are implicitly computed by kernels. The proposed kernel-based nonlinear detector, so-called kernel matched subspace detector (KMSD), is applied to several hyperspectral images to detect targets of interest. KMSD showed superior detection performance over the conventional MSD when tested on several synthetic data and real hyperspectral imagery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.