Abstract
Sparse nonlinear classification and regression models in reproducing kernel Hilbert spaces (RKHSs) are considered. The use of Mercer kernels and the square loss function gives rise to an overdetermined linear least-squares problem in the corresponding RKHS. When we apply a greedy forward selection scheme, the least-squares problem may be solved by an order-recursive update of the pseudoinverse in each iteration step. The computational time is linear with respect to the number of the selected training samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.