Abstract
Thanks to its fine balance between model flexibility and interpretability, the nonparametric additive model has been widely used, and variable selection for this type of model has been frequently studied. However, none of the existing solutions can control the false discovery rate (FDR) unless the sample size tends to infinity. The knockoff framework is a recent proposal that can address this issue, but few knockoff solutions are directly applicable to nonparametric models. In this article, we propose a novel kernel knockoffs selection procedure for the nonparametric additive model. We integrate three key components: the knockoffs, the subsampling for stability, and the random feature mapping for nonparametric function approximation. We show that the proposed method is guaranteed to control the FDR for any sample size, and achieves a power that approaches one as the sample size tends to infinity. We demonstrate the efficacy of our method through intensive simulations and comparisons with the alternative solutions. Our proposal thus, makes useful contributions to the methodology of nonparametric variable selection, FDR-based inference, as well as knockoffs. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.