Abstract

The kernel function of Cauchy type for type BC is defined as a solution of linear q-difference equations. In this paper, we show that this kernel function intertwines the commuting family of van Diejen’s q-difference operators. This result gives rise to a transformation formula for certain multiple basic hypergeometric series of type BC. We also construct a new infinite family of commuting q-difference operators for which the Koornwinder polynomials are joint eigenfunctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.