Abstract

In the paper we deal with the problem of non-linear dynamic system identification in the presence of random noise. The class of considered systems is relatively general, in the sense that it is not limited to block-oriented structures such as Hammerstein or Wiener models. It is shown that the proposed algorithm can be generalized for two-stage strategy. In step 1 (non-parametric) the system is approximated by multi-dimensional regression functions for a given set of excitations, treated as representative set of points in multi-dimensional space. ‘Curse of dimensionality problem’ is solved by using specific (quantized or periodic) input sequences. Next, in step 2, non-parametric estimates can be plugged into least squares criterion and support model selection and estimation of system parameters. The proposed strategy allows decomposition of the identification problem, which can be of crucial meaning from the numerical point of view. The “estimation points” in step 1 are selected to ensure good task conditioning in step 2. Moreover, non-parametric procedure plays the role of data compression. We discuss the problem of selection of the scale of non-parametric model, and analyze asymptotic properties of the method. Also, the results of simple simulation are presented, to illustrate functioning of the method. Finally, the proposed method is successfully applied in Differential Scanning Calorimeter (DSC) to analyze aging processes in chalcogenide glasses.

Highlights

  • The problem of non-linear system modeling has been intensively examined over the past four decades

  • First attempts at generalization of linear system identification theory for non-linear models were based on Volterra series representation ([2])

  • Proposed identification algorithm is run without any prior knowledge about the system structure and parametric representation of nonlinearity, non-parametric multi-dimensional kernel regression estimate was generalized for modeling of non-linear dynamic systems, and the dimensionality problem was solved by using special input sequences, the scheme elaborated in the paper was successfully applied in Differential Scanning Calorimeter for testing parameters of chalcogenide glasses

Read more

Summary

Introduction

The problem of non-linear system modeling has been intensively examined over the past four decades. Traditional Volterra series-based approach leads to relatively high numerical complexity, which is often not acceptable from practical point of view. To cope with this problem regularization or tensor network techniques have been proposed recently ([3,4]). Proposed identification algorithm is run without any prior knowledge about the system structure and parametric representation of nonlinearity, non-parametric multi-dimensional kernel regression estimate was generalized for modeling of non-linear dynamic systems, and the dimensionality problem was solved by using special input sequences, the scheme elaborated in the paper was successfully applied in Differential Scanning Calorimeter for testing parameters of chalcogenide glasses.

Class of Systems
Wiener System
Finite Memory Bilinear System
General Overview
Discrete Input
Periodic Input
Simulation Example
Chalcogenide Glasses
Results of Experiment
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.