Abstract
Gaussian mixture model (GMM) is an efficient method for parametric clustering. However, traditional GMM can't perform clustering well on data set with complex structure such as images. In this paper, kernel trick, successfully used by SVM and kernel PCA, is introduced into EM algorithm for solving parameter estimation of GMM, which is so called kernel GMM (kGMM). The basic idea of kernel GMM is to apply kernel based GMM in feature space instead of in input data space. In order to avoid the curse of dimension, the proposed kGMM also embeds a step to automatically select discriminative features in feature space. kGMM is employed for the task of image binarization. Result shows that the proposed approach is feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.