Abstract
There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma.KGCCA is available on CRAN as part of the RGCCA package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.