Abstract

For multi-class classification problems, a new kernel-free nonlinear classifier is presented, called the hard quadratic surface least squares regression (HQSLSR). It combines the benefits of the least squares loss function and quadratic kernel-free trick. The optimization problem of HQSLSR is convex and unconstrained, making it easy to solve. Further, to improve the generalization ability of HQSLSR, a softened version (SQSLSR) is proposed by introducing an ε-dragging technique, which can enlarge the between-class distance. The optimization problem of SQSLSR is solved by designing an alteration iteration algorithm. The convergence, interpretability and computational complexity of our methods are addressed in a theoretical analysis. The visualization results on five artificial datasets demonstrate that the obtained regression function in each category has geometric diversity and the advantage of the ε-dragging technique. Furthermore, experimental results on benchmark datasets show that our methods perform comparably to some state-of-the-art classifiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call