Abstract

AbstractWe describe a kernel energy method (KEM) for applying quantum crystallography to large molecules, with an emphasis on the calculation of the molecular energy of peptides. The computational difficulty of representing the system increases only modestly with the number of atoms. The calculations are carried out on modern parallel supercomputers. By adopting the approximation that a full biological molecule can be represented by smaller “kernels” of atoms, the calculations are greatly simplified. Moreover, collections of kernels are, from a computational point of view, well suited for parallel computation. The result is a modest increase in computational time as the number of atoms increases, while retaining the ab initio character of the calculations. We describe a test of our method, and establish its accuracy using 15 different peptides of biological interest. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.