Abstract

The kernel energy method (KEM) is applied to the vesicular stomatitis virus (VSV) nucleoprotein (PDB ID code 2QVJ). The calculations employ atomic coordinates from the crystal structure at 2.8-A resolution, except for the hydrogen atoms, whose positions were modeled by using the computer program HYPERCHEM. The calculated KEM ab initio limited basis Hartree-Fock energy for the full 33,175 atom molecule (including hydrogen atoms) is obtained. In the KEM, a full biological molecule is represented by smaller "kernels" of atoms, greatly simplifying the calculations. Collections of kernels are well suited for parallel computation. VSV consists of five similar chains, and we obtain the energy of each chain. Interchain hydrogen bonds contribute to the interaction energy between the chains. These hydrogen bond energies are calculated in Hartree-Fock (HF) and Møller-Plesset perturbation theory to second order (MP2) approximations by using 6-31G** basis orbitals. The correlation energy, included in MP2, is a significant factor in the interchain hydrogen bond energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.