Abstract
Multistage sampling is a common sampling technique employed in many studies. In this setting, observations are identically distributed but not independent, thus many traditional kernel smoothing techniques, which assume that the data are independent and identically distributed (i.i.d.), may not produce reasonable density estimates. In this paper, we sample repeatedly with replacement from each cluster, create multiple i.i.d. samples containing one observation from each cluster, and then create a kernel density estimate from each i.i.d. sample. These estimates will then be combined to form an estimate of the marginal probability density function of the population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.