Abstract
This paper presents a novel algorithm to assess the health status in monitoring sensor data using a kernel-based support vector machine (SVM) approach. Today, accurate fault prediction is a key issue raised by maintenance. In particular, automatically modelling the normal behaviour from condition monitoring data is probably one of the most challenging problems, specially when there is limited information of real faults. To overcome this difficulty, a data-driven learning framework based on nonparametric density estimation for outlier detection and ν-SVM for normality modelling, with optimal bandwidth selection, is proposed. A health score based on the log-normalisation of the distance to the separating hyperplane is also provided. Experimental results obtained when analysing the propagation of a critical fault over time in a marine diesel engine demonstrate the validity of the algorithm. The predictions of normality models learned were compared to those of the k-nearest neighbours (kNN) method. Low false positive rates on healthy data and improved prediction capacities are achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.