Abstract
The recent proliferation of Location-Based Services (LBSs) has necessitated the development of effective indoor positioning solutions. In such a context, Wireless Local Area Network (WLAN) positioning is a particularly viable solution in terms of hardware and installation costs due to the ubiquity of WLAN infrastructures. This paper examines three aspects of the problem of indoor WLAN positioning using received signal strength (RSS). First, we show that, due to the variability of RSS features over space, a spatially localized positioning method leads to improved positioning results. Second, we explore the problem of access point (AP) selection for positioning and demonstrate the need for further research in this area. Third, we present a kernelized distance calculation algorithm for comparing RSS observations to RSS training records. Experimental results indicate that the proposed system leads to a 17 percent (0.56 m) improvement over the widely used K-nearest neighbor and histogram-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.