Abstract

A meshless kernel-based method is developed to solve coupled second-order elliptic PDEs in bulk domains and surfaces, subject to Robin boundary conditions. It combines a least-squares kernel collocation method with a surface-type intrinsic approach. Therefore, we can use each pair for discrete point sets, RBF kernels (globally and restrictedly), trial spaces, and some essential assumptions, for the search of least-squares solutions in bulks and on surfaces respectively. We first give error estimates for domain-type Robin-boundary problems. Based on this and existing results for surface PDEs, we discuss the theoretical requirements for the employed Sobolev kernels. Then, we select the orders of smoothness for the kernels in bulks and on surfaces. Lastly, several numerical experiments are demonstrated to test the robustness of the coupled method for accuracy and convergence rates under different settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.