Abstract
Kernel-based nonlinear feature extraction and classification algorithms are a popular new research direction in machine learning. This paper examines their applicability to the classification of phonemes in a phonological awareness drilling software package. We first give a concise overview of the nonlinear feature extraction methods such as kernel principal component analysis (KPCA), kernel independent component analysis (KICA), kernel linear discriminant analysis (KLDA), and kernel springy discriminant analysis (KSDA). The overview deals with all the methods in a unified framework, regardless of whether they are unsupervised or supervised. The effect of the transformations on a subsequent classification is tested in combination with learning algorithms such as Gaussian mixture modeling (GMM), artificial neural nets (ANN), projection pursuit learning (PPL), decision tree-based classification (C4.5), and support vector machines (SVMs). We found, in most cases, that the transformations have a beneficial effect on the classification performance. Furthermore, the nonlinear supervised algorithms yielded the best results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.