Abstract

AbstractWe compute the kernel of a shape embedded in 3D as a polygon mesh, which is defined as the set of all points that have a clear line of sight to every point of the mesh. The KerGen algorithm, short for Kernel Generation, employs efficient plane‐plane and line‐plane intersections, alongside point classifications based on their positions relative to planes. This approach allows for the incremental addition of kernel vertices and edges to the resulting set in a simple and systematic way. The output is a polygon mesh that represents the surface of the kernel. Extensive comparisons with the existing methods, CGAL and Polyhedron Kernel, demonstrate the remarkable timing performance of our novel additive kernel computation method. Yet another advantage of our additive process is the availability of the partial kernel at any stage, making it useful for specific geometry processing applications such as star decomposition and castable shape reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.