Abstract

Peroxiredoxin 6 (Prdx6), a 1-cys Prdx has both peroxidase and phospholipase A2 activities, protecting against oxidative stress and regulating pulmonary surfactant phospholipid metabolism. This study determined the mechanism by which keratinocyte growth factor (KGF) and the glucocorticoid analogue, dexamethasone (Dex), induce increased Prdx6 expression. Transcriptional activation by KGF in both A549 lung adenocarcinoma cells and rat lung alveolar epithelial type II (ATII) cells utilizes an antioxidant response element (ARE), located between 357 and 349 nucleotides before the PRDX6 translational start, that is also necessary for upregulation of the human PRDX6 promoter in response to oxidative stress. Activation is mediated by binding of the transcription factor, Nrf2, to the ARE as shown by experiments using siRNA against Nrf2 and by transfecting ATII cells isolated from lungs of Nrf2 null mice. KGF triggers the migration of Nrf2 from cytoplasm to nucleus where it binds to the PRDX6 promoter as shown by chromatin immunoprecipitation assays. Activation of transcription by Dex occurs through a glucocorticoid response element located about 750 nucleotides upstream of the PRDX6 translational start. This study demonstrates that KGF can activate an ARE in a promoter without reactive oxygen species involvement and that KGF and Dex can synergistically activate the PRDX6 promoter and protect cells from oxidative stress. These two different activators work through different DNA elements. Their combined effect on transcription of the reporter gene is synergistic; however, at the protein level, the combined effect is additive and protects cells from oxidative damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.